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Proton SEU Cross Sections Derived from Heavy-Ion
Test Data
Larry D. Edmonds

Abstract—Many papers have presented models for estimating
proton single event upset (SEU) cross sections from heavy-ion test
data, but all rigorous treatments to date are based on the sensi-
tive volume (SV) model for charge collection. Computer simula-
tions have already shown that, excluding devices utilizing phys-
ical boundaries for isolation, there is no well-defined SV. A more
versatile description of charge collection, which includes the SV
model as a special case, utilizes a charge-collection efficiency func-
tion that measures the effect that the location of ionization has
on collected charge. This paper presents the first rigorous anal-
ysis that uses a generic charge-collection efficiency function to re-
late proton to heavy-ion cross sections. The most practical result
is an upper bound for proton SEU or single event latchup (SEL)
cross sections, which requires no information about the charge-col-
lection efficiency function, except that it exists. In addition, some
models previously presented by others are reproduced (or, in one
case, extended) by applying the general theory to special cases. The
similarities and differences between a variety of models become
clear when the models are recognized to be special cases or varia-
tions of this general theory.

Index Terms—Charge-collection depth, charge-collection effi-
ciency, effective flux, proton SEU cross section, SEU, single event
upset.

I. INTRODUCTION

M ANY semiconductor devices flown in space are exposed
to both heavy ions from galactic cosmic rays (in addi-

tion to other possible sources) and a large proton flux from solar
events and/or a planetary radiation belt. Regarding single event
effects (SEE), the most important types of reactions induced in
a device can be different for the two particle types (direct ion-
ization from heavy ions versus the creation of reaction products
by protons via nuclear reactions, with the reaction products pro-
ducing the ionization). Therefore, the most reliable SEE rate cal-
culations utilize experimentally measured device proton cross
sections for proton SEE rates, and utilize experimentally mea-
sured heavy-ion cross sections for heavy-ion SEE rates. The use
of proton data to estimate heavy-ion rates is not widely accepted
by the community at present, so many investigators consider
heavy-ion tests to be essential for devices that will be exposed
to heavy ions. Therefore, a very common situation in practice is
that in which a device has been tested with heavy ions but not
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yet tested with protons. A proton test is an additional expense,
so there is a motivation to derive models that predict proton
cross sections from heavy-ion test data. This is the subject of
the present paper. The analysis is intended for a certain class of
SEE in which the physical postulates in Section II are believed
to be adequate approximations. Single event upset (SEU) is the
prototype assumed in most of the discussions, but the analysis is
expected to also apply to single event latchup (SEL). The results
derived here are limited to those cases in which direct ionization
from protons is not important, so the proton cross section is en-
tirely due to reaction products created by the protons.

Many papers have derived relationships between proton and
heavy-ion SEU susceptibility (a good overview of some of the
work done prior to 1996 was given by Petersen [1]). However,
all rigorous treatments (i.e., the physical postulates are precisely
stated, and rigorous analysis is applied to the postulates, e.g., in
[2]) to date use the sensitive volume (SV) model as the phys-
ical postulate. This model states that the portion of the charge
liberated by an ionizing particle that contributes to SEU is the
charge liberated within some definite volume within the device.
Charge liberated outside the volume is assumed to make no con-
tribution. However, computer simulations show that, excluding
devices utilizing physical boundaries for isolation, there is no
such volume. Instead, charge collected at a device node changes
continuously as the source of ionization (e.g., an ion track) is
moved. A more realistic description of charge collection recog-
nizes that charge liberated at any location (within limits estab-
lished by physical boundaries) makes some contribution to col-
lected charge, but the amount depends on the source location.
A physical postulate that is more versatile than the SV model
(but includes the SV model as a special case) is that there is a
charge-collection efficiency function (a function of the spatial
coordinates within a device) that measures the effect of source
location on collected charge. The analysis given here is the first
rigorous analysis that explicitly includes a charge-collection ef-
ficiency function to derive a correlation between heavy-ion and
proton SEU or SEL cross sections. A charge-collection effi-
ciency function was theoretically calculated for the special case
of total (integrated in time from zero to infinity) charge collec-
tion by diffusion [3], but the present paper considers a more
generic function, which is any function that adequately satis-
fies the first postulate in the next section.

The analysis leads to several conclusions. The conclusion
having the most practical applications (because it does not re-
quire information that is not available) is an upper bound for
proton cross sections. Additional conclusions are equalities (in-
stead of inequalities or bounds) derived for each of several spe-
cial cases. These additional conclusions may become useful if
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future work finds ways to obtain the required information, but
another motivation for presenting them is academic curiosity. It
is interesting to see the similarities and differences between var-
ious cases. It is also interesting to compare these conclusions to
results previously derived by other investigators.

In spite of limitations of the SV model, nearly all of the nu-
merous published papers that predict proton cross sections from
heavy-ion data report good agreement between measured proton
cross sections and model predictions. However, previous re-
sults generally contain adjustable parameters selected for a good
track record, in the sense of producing agreement for the ma-
jority of the cases in which comparisons were made between
measurement and predictions. Even after a good track record has
been established, there is still some uncertainty as to whether a
new case of interest will conform to the same pattern. This un-
certainty is a risk to a flight project that is relying on model
predictions for a particular device that has not been tested with
protons. The upper bound presented in Section III contains no
arbitrary or adjustable parameters, hence there is no artificial
way to obtain a good track record. A disadvantage is that the
upper bound can sometimes be excessively conservative, par-
ticularly for devices that are completely immune to protons.
The only required input information is heavy-ion test data (from
long-range, normal-incident ions), which is not enough infor-
mation to determine proton cross sections, so the upper bound
is a more accurate proton cross section estimate for some de-
vices than for others. The upper bound is the proton cross section
for the worst possible device (i.e., having the greatest possible
proton susceptibility) consistent with the heavy-ion test data.
However, it will be seen in Section VI that this “worst” device
is not always a rare or hypothetical case. It is fairly common for
real devices that are susceptible to protons to be nearly this bad,
in the sense that the proton cross sections are within a factor of
three of this upper bound.

II. PHYSICAL POSTULATES

A. The First Postulate

The first physical postulate assumes that for each point
in a device, there is a weighting function which mea-
sures the relative importance of an increment of charge (e.g.,
a piece of an ion track) liberated at the point, compared to
the same amount of charge liberated at other locations. To be
more specific, suppose two points in the deviceand sat-
isfy . Then a given amount of charge liberated
near the point will produce the same device response as twice
this charge liberated near the point. The precise and complete
statement of the first postulate is that there exists a function
and a constant (a property of the device) such that

SEE occurs if and only if (1)

where is the excess charge density (charge per unit volume)
liberated by a particle hit, and the volume integral integrates
over the entire device. For SEU, the relevant physical quantity
is charge collected at a device node. In this case,is the crit-
ical charge and can be called a charge-collection efficiency

function. For the special case of the SV model,equals 1 in-
side the SV and zero outside. Note that if the relevant physical
quantity is charge collected over a finite time period associated
with some device time constant, then is the critical value of
charge collected over this time period, andis the weighting
function for this quantity. The first postulate is quite general.
For example, could be a time integral of the product of some
current (possibly at a device contact, but not necessarily), multi-
plied by some coefficient that favors current at early times more
than current at later times (with “early” and “late” defined by
some device time constant). Whatever the physical quantity is
that represents, is the weighting function for that quan-
tity. The upper bound estimate given in Section III does not re-
quire that we even know what kind of physical quantity (e.g.,
charge collected at a device contact, or something else) that
and refer to. The only requirement is that some constant
and some corresponding functionsatisfying (1)exist(we do
not have to know what they are). Because of this generality, the
theory is expected to apply to SEL as well as to SEU. However,
in order to use familiar terminology, the prototype assumed for
most discussions is SEU. We will call the critical charge, and
we will call the charge-collection efficiency function.

A property of the first postulate that may appear to be a se-
vere limitation is that it suggests a certain kind of linearity which
will be called the “additive property.” For conceptual clarity, as-
sume that the relevant physical quantity is collected charge at
some device contact. The additive property is defined to mean
that the collected charge from an ion track is the sum of contribu-
tions from track sections (with the track partitioned into sections
in any arbitrary way), with the contribution from each section
calculated with only that section present (all other sections are
removed from the device). This is a sufficient condition for the
first postulate to apply, but fortunately it is not a necessary con-
dition (as argued later). This is fortunate because the additive
property is frequently violated. An example of a violation, in
which a track can be less than the sum of its parts, is provided
by a DRAM hit by an “overkill” heavy ion (the LET is much
larger than needed to cause an SEU for the ion hit location).
A DRAM storage capacitor can only collect a finite amount of
charge before an associated p–n junction becomes forward bi-
ased and charge collection stops. A small track section, taken
by itself with all other sections removed from the device, will
not see this effect, while an entire overkill track will. The charge
collected from the entire track will be less than the sum of con-
tributions when each contribution is from one section without
the others present in the device.

An example in which a track is greater than the sum of its
parts is charge collection under high-carrier-density condi-
tions. Funneling (enhanced voltage drops across quasi-neutral
regions) is a response to, and an indicator of, such conditions
(but it is a more dramatic indicator for n–p junctions than for
p –n junctions) [4], [5]. A small track section taken by itself
may not induce such conditions while the entire track does.

Fortunately, two properties taken together help the first pos-
tulate to remain valid in spite of violations of the additive prop-
erty. The first property, which will be called the “JBA property”
states that the physical interactions relevant to SEU cross sec-
tions are those interactions applicable to particle hits that are just
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barely able (JBA) to cause an upset. The relevant interactions
for a given ion are those applicable to ion hits at the perimeter
of the cross section for that ion. If we assume (right or wrong)
that the same physics applies to hits at other locations, the as-
sumed physics may or may not correctly describe charge collec-
tion from those other hit locations, but will still correctly predict
the SEU cross section. In particular, physical interactions pro-
duced by overkill hits are not always relevant (e.g., the above
DRAM example). The second property, which will be called the
“ -flexibility property” states that the physical quantity (call it

) that refers to need not be the actual collected charge for all
ion hits, as long as it equals (or is any strictly increasing function
of, for still more generality) the actual collected charge for JBA
hits. If there exists a physical quantity having this property
and also having the additive property (we do not have to know
what is, as long as it exists), the first postulate is valid.

For illustration, consider a device (hypothetical if not real)
in which a particular approximation explained below applies to
charge collection under high-density conditions. This approx-
imation ignores nonlinearities (produced by depletion region
boundary motion as a collapsed depletion region expands to
its original size [4], [5]) when comparing different high-den-
sity conditions, but there is still a nonlinearity associated with
the transition between low- and high-density conditions. For
low-density conditions, the current collected at a reverse-biased
depletion region is the minority-carrier diffusion current cal-
culated from the minority-carrier diffusion equation. For suf-
ficiently global high-density conditions, the approximation is
that the current is twice the minority-carrier diffusion current
calculated from the ambipolar diffusion equation [4], [5] (in-
cidentally, funneling in this approximation is a response to the
current rather than a cause of current in the sense that the po-
tential distribution becomes what is needed to produce the drift
currents needed to make the total current be as stated [4], [5]).
The actual collected charge does not have the additive prop-
erty if the entire ion track creates sufficiently global high-den-
sity conditions while a small track section alone would not. A
way around this problem is to let be twice the charge from
the minority-carrier diffusion current calculated from the am-
bipolar diffusion equation. This does have the additive property,
so there is an corresponding to . If it is also true (a big “if,”
but assume this for illustration) that all JBA hits produce suf-
ficiently global high-density conditions, then equals the ac-
tual collected charge for JBA hits, sohas a critical value and
the first physical postulate is valid. The existence of ansat-
isfying (1) was demonstrated for this hypothetical example by
constructing it. Even if we did not know how to construct it, the
first physical postulate would still apply (although we may not
know it) because the only requirement is that such anexists
(we do not have to know what it is).

Because the above illustration contains some simplifying as-
sumptions, it does not provide a convincing argument that the
first physical postulate is always valid (it probably isn’t). The
intention of this example is merely to argue that the postulate
has broader applicability than we would expect if we did not
consider the JBA property and the-flexibility property. Also,
the first postulate is more versatile than the SV model, while
including this model as a special case. Therefore, even when in-

valid, the first postulate still approximates reality at least as well
as the SV model.

B. The Second Postulate

The second postulate is probably the weakest part of the anal-
ysis, and future work may find ways to improve upon this. This
postulate is presently needed to simplify the analysis. This pos-
tulate assumes that reaction products created by protons have
short enough ranges so thatcan be approximated as a con-
stant over the reaction product trajectory.

The second postulate has one tendency to produce conserva-
tive proton cross section estimates. The worst possible proton re-
action allowed by the second postulate is that in which all charge
liberated by the reaction products is liberated at a point where
is maximum, i.e., all liberated charge is collected with the max-
imum efficiency. In reality, if varies considerably over a reac-
tion product trajectory, then contributions to the liberated charge
from different source locations cannot all be collected with the
maximum efficiency. Unfortunately, there is another tendency
to underestimate proton cross sections. The explanation is sim-
plest for the SV model, so we assume that this model applies
for the purpose of illustration. The second postulate does not
recognize reactions outside the SV that send reaction products
into the SV. In reality this can occur, so the actual proton SEU
cross section can include some events in which reactions occur
outside the SV, while the calculated cross section excludes such
events.

The second postulate is a crude approximation for a real de-
vice, but it may not be as bad as the SV model would indicate.
To discuss this, we first discuss two types of depths in a de-
vice. The most familiar of the two depths is thecharge-collec-
tion depth, defined to be collected charge from a long- (effec-
tively infinite) range normal-incident ion, divided by the charge
per unit length liberated along the ion track. The charge-col-
lection depth defined this way is a variable, i.e., a function of
the lateral coordinates describing the ion hit location. This was
noted by Petersen [6] and later by Baraket al. [7] when dis-
cussing the cross section associated with the charge-collection
depth exceeding a specified value. Petersen has also used other
terminology, a charge-collection gain [8], following Massengill
et al.who reported that some devices exhibit a parasitic bipolar
gain that varies as ion hit location is varied [9]. The first phys-
ical postulate stated in the previous subsection implies that the
charge-collection depth at a given lateral location is the integral
of along a perpendicular line through the device at that lat-
eral location. To simplify this discussion, we are assuming that
we do not have to utilize the -flexibility property, so refers
to actual collected charge (otherwise we would have to refer to

instead of collected charge). Another depth, thecontributing
depth, is the depth at which is small enough to be neglected at
greater depths. It is only for the SV model that the charge-col-
lection depth and contributing depth are equal. More generally
(assuming that does not exceed 1 anywhere in the device), the
contributing depth is larger than the charge-collection depth.

The second physical postulate requires that reaction product
ranges (at least for those reaction products that are most im-
portant to the device proton cross section) be less than the con-
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tributing depth, but this can be more lenient than requiring the
ranges to be less than the charge-collection depth. For a hy-
pothetical illustration, suppose that at some lateral location we
have within a 10 m depth, and below this
depth. The charge-collection depth at this lateral location is only
1 m, but the contributing depth is 10m, and the second pos-
tulate provides a fairly good approximation when the reaction
product ranges are only a few microns. This hypothetical ex-
ample is probably not very typical, so it does not furnish a con-
vincing argument that the second postulate is a good approxi-
mation. The approximation may still be crude, and improving
upon this might be a worthwhile objective. The intention of this
example is merely to argue that the approximation might be a
little better than the SV model would suggest.

III. A N UPPERBOUND FORPROTONSEU CROSSSECTIONS

It is easy to show that the postulates in Section II imply that
the SEU proton cross section , for protons having energy

, can be expressed as

(2)

where is the density of targets (number of silicon atoms per
unit volume) and is the per target cross section for a
proton having energy to produce a reaction that liberates a
charge exceeding. Note that the integrand in (2) is zero at any
location where , so the volume integral in (2) can be taken
to be over the entire device (in fact, it can be over all space). It
is shown in the appendix that the first postulate implies that the
cross section , for long-range heavy ions having LET,
satisfies

(3)

where

coul
cm

MeV-cm mg

is a unit conversion factor for converting LET into liberated
charge per unit length along the ion track.

Now define by

(4)

Note that (4) implies

or

so (2) gives

and using (3) produces the upper bound

(5)

IV. EVALUATION OF

To calculate from (4), we need to evaluate . The
used here is the same as the BGR( ) function

used by Normand ([10, Fig. 1]), but with a unit conversion
applied so that is expressed as a function of liberated
charge instead of the energy deposited by the reaction
products. Note that these data apply to neutrons, which is
a good approximation for protons only at the larger values
of ( 100 MeV). This should be adequate for practical
applications, because the proton saturation cross section (i.e.,
large cross section) is the most important parameter for
proton-induced SEU rates in typical space environments. This
is because a typical proton environment shielded by typical
spacecraft shielding is such that most protons having energies
large enough to create SEUs, also have energies large enough
for the cross section to be roughly equal to the saturation
cross section. Therefore, the shape of the versus
curve at small is only of secondary importance for SEU rate
calculations. Also, Baraket al. provided an efficiency factor
that can be used for refining SEU rate estimates derived from
the saturation cross section ([11, Table I]).

A fairly good fit to the data when MeV has the form

(6)

which gives

where , , and are given in Table I.
All numerical results given later in this paper apply to 200

MeV. Readers interested in lower energies (which are partic-
ularly important when neutrons are a concern) should keep in
touch with ongoing research in order to use the most up-to-date

. There has already been a recent refinement for incident en-
ergies up to 150 MeV (for both neutrons and protons) [12] not
included in Table I. The equations derived in this paper are suf-
ficiently generic so that readers can use theof their choice.

V. NUMERICAL ALGORITHMS

The upper bound proton cross section is given by (5). There
are several ways to evaluate the integral in (5). One way is
a numerical integration. Another way applies to those cases
(which are common but not universal) in which the heavy-ion
cross section can be adequately fit by an analytic function
having a known integral. A third method is also a numerical
integration, but it utilizes an existing computer code that
calculates heavy-ion SEU rates in a user-supplied environment.
The second two methods are discussed separately in the first
two subsections. Other considerations, regarding the amount
and type of data to be used, are discussed in the last two
subsections.
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TABLE I
FITTING PARAMETERS A AND B FOR n�,

AND THE IMPLIED �

A. Evaluation via an Exponential Fit

A simple function that frequently (not always) produces a
good fit to heavy-ion SEU or SEL cross section data is given
by

(7)

where (a constant) is the saturation cross section, and
(a constant) is the LET value at which the cross section

is times the saturation cross section. Although (7) was
derived from physical analysis [13], it does not apply to all
cases. One reason (perhaps not the only reason) is that a sum
of functions of the type given by (7) is not another function
of the same type, unless is the same for all terms in
the sum. Therefore (7) does not apply to devices containing
dissimilar components that contribute to the cross section.
However, (7) is worth considering, because it frequently does
apply, and a test for determining whether it does apply is
very simple. The test plots the cross section against on
semi-logarithmic paper (the cross section uses the logarithmic
scale), and (subject to qualifications in the next paragraph)
we look for a straight line.

Two considerations are relevant when testing the applicability
of (7). The first involves cosine-law errors. Heavy-ion tests
typically change the tilt angle of the device relative to the ion
beam to mimic a change in ion LET, and the data are then
converted via an assumed cosine law. The converted data
are intended to represent the device susceptibility at normal
incidence. However, the cosine-law conversion is only an
approximation, and not always a good approximation. An
unfortunate property of the popular Weibull function is that
it fits a certain class of cosine-law errors (those giving the
illusion of a fast approach to saturation) very well. This is
unfortunate because cosine-law errors are not always noticed
(incidentally, Petersen suggests that a log normal distribution
might be better than the Weibull fit [8]). The fit given by
(7) generally does not fit cosine-law errors, so preference
should be given to data measured at normal incidence when
determining whether the fit applies.

The second consideration is that (7) has no threshold LET (the
LET at which the cross section is zero). This is not a concern
as long as the cross section calculated from (7) is negligibly
small at LET less than the experimentally measured threshold
LET. The straight line previously discussed often fails to fit the
smallest LET (largest 1/LET) data, but this is usually not an
important concern.

An example is provided by data obtained by Levinsonet
al. [14] for the HM65162 SRAM produced in 1985 (the year
is relevant because there are different versions of the device

Fig. 1. Heavy-ion SEL cross section for the HM65162 SRAM produced in
1985. Data (points) are from Levinsonet al. [14]. The curve is from (7) using
� = 0:116 cm , L = 28:3 MeV-cm /mg.

having different SEL cross sections). Measured heavy-ion cross
section data (points), and a fit (curve) obtained from (7) are
shown in Fig. 1. The fitting parameters are cm ,

MeV-cm /mg. It is not known which, if any, of
the points might contain cosine-law errors (i.e., were measured
at angles), so the fit attempted to accommodate all points.
The seemingly low cross section at the largest LET data point
might be influenced by a recombination loss discussed by
Levinson et al. [14], so this point was given a low priority
when selecting the fit. If this point is meaningful, then the
fit overestimates the cross section, but this is okay for an
upper bound estimate of . Note that the calculated cross
section is negligible for LET below that of the lowest LET
point, even though (7) has no threshold LET.

For those devices such the (7) provides an adequate approxi-
mation, the integral in (5) can be evaluated, and the result is

(5) (7)

(8)

B. Evaluation via a Heavy-Ion Rate Calculation

This method performs a numerical integration by using an
existing computer code that calculates heavy-ion SEU rates in
a user-supplied environment. The physics assumed by the code
must be consistent with the first postulate in Section II, but this
includes the SV model, which is used in the standard codes.
This is a convenient method for individuals accustomed to cal-
culating heavy-ion SEU rates, because no programming is re-
quired, and routine calculations can be used.

Most of the discussion below justifies the conclusion at the
end. Readers willing to believe the conclusion without seeing
the justifications can skip to the last paragraph in this subsection,
which describes the algorithm.

To derive the algorithm, note that (3) applies not only to cross
sections measured at normal incidence, but also to cross sections
measured at any angle, if is interpreted as the directional
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cross section. Therefore

The solid angle integral of the above equation produces a
heavy-ion SEU rate in an isotropic environment (with the
integral LET flux proportional to ) on the right side. The
result is

day-cm
cm

coul- m
(9)

where is defined by

Heavy-ion rate for a device having a normal-in-
cident cross section and produced by an
integral LET flux given by

m -sec-ster MeV-cm mg .
The constant in the flux was selected so that inconvenient
constants do not appear in (9). The flux will be called the
hypothetical flux. Substituting (9) into (5) gives

(5) (10)

where the quantities in (10) are the dimensionless numbers de-
fined by

cm

coul- m cm

In other words, is the numerical part of when
expressed in the units of cm. Analogous statements apply to
the other quantities.

Note that would not be well defined if the flux was other
than the hypothetical flux, because a normal-incident cross
section would not otherwise uniquely determine the heavy-ion
SEU rate. Different devices can have the same normal-incident
data but different directional cross sections at other angles. This
difference will produce different SEU rates in most heavy-ion
environments. However, (9) implies that, for this special and hy-
pothetical heavy-ion environment, different devices having the
same normal-incident data also have the same heavy-ion SEU
rate, even though they may have different directional cross sec-
tions at other angles.

Readers that would like to see a demonstration of the above
assertion can do so by using a standard computer code that cal-
culates the heavy-ion SEU rate for the traditional rectangular
parallelepiped (RPP) shaped SV. All RPPs being compared are
given the same upper surface areas and threshold LETs, so that
they have the same normal-incident cross section curve, but they
are given different thicknesses (with correspondingly different
critical charges so that the threshold LETs are the same). In most
environments, the calculated rate for each RPP will depend on
the RPP thickness. However, for the hypothetical flux, the

same rate will be calculated for all choices of the RPP thickness
(except for numerical errors, e.g., associated with data interpola-
tion/extrapolation and/or approximations for chord-length dis-
tribution functions).

Any computer code consistent with the first postulate in Sec-
tion II should calculate the same value for. Note, however,
that the conventional model used for smooth device cross sec-
tion curves is the integral RPP (IRPP) model, which regards a
device as a collection of RPPs, that may have different critical
charges (at least this is the original statement of the RPP model
[15]). This model does not satisfy the first postulate in Section
II, because different values of are associated with different
RPPs. However, each RPP satisfies the postulate, so (5), (9), and
(10) apply to the individual RPPs. Summing these results over
the RPPs produces the same results (5), (9), and (10) but with the
cross sections interpreted as device cross sections. We can there-
fore use these results together with the traditional IRPP method
for calculating (the RPP thickness is arbitrary because the
same is calculated for any thickness).

Most existing computer codes that can be used to calculate
accept the environment in the form of a table of heavy-ion

flux versus LET. If the code allows the user to select the LET
values appearing in the table, we must consider both numerical
errors from coarseness of the tabulation, and whether the code
will have to extrapolate outside the range of the table (keeping
in mind that thin RPPs require the flux to be evaluated at LETs
much less than the threshold LET). Based on these considera-
tions, a suggested tabulation is

for (11a)

where

MeV-cm mg

m -sec-ster

If the computer code accepts the environment in the form of a
differential (in LET) flux instead of an integral flux , a
suggested tabulation is

for (11b)

where

m -sec-ster MeV-cm mg

The numerical algorithm for calculating an upper bound for
the proton cross section via the rate calculation method is sum-
marized as follows. A standard computer code designed to cal-
culate heavy-ion SEU rates in a user supplied isotropic environ-
ment is used. The environment given to the code is either the
integral flux or the differential flux (as dictated by the
computer code), which can be tabulated as indicated in (11a)
and (11b). The code is also given the device heavy-ion cross
section data, and the code calculates the heavy-ion SEU rate.
If the code uses the IRPP method, the RPP thickness is arbitrary
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(the same will be calculated from any thickness) as long as
the thickness is not extreme enough to create large numerical er-
rors. The upper bound estimate is then obtained from (10), with

obtained from Table I.

C. The Relevant LET Range

A property of the integral in (5) that may seem unfortunate
is that significant contributions to the integral can come from
the high-LET portion of the curve; from LETs larger than
we might expect to be relevant to proton cross sections. Three
reasons for this are:

1) A conservative property of the second physical postu-
late (Section II) tends to exaggerate the importance of the
high-LET portion of the curve.

2) Intentional conservatism that makes the estimate for
an upper bound can sometimes exaggerate the importance
of the high-LET portion of the curve.

3) Some contribution to from the higher-LET portions
of the curve is real. This was pointed out be Petersen
[16]. Furthermore, the experimentally measured can
sometimes be under-estimated by not integrating to large
enough LET, again indicating that some contribution to

from the higher-LET portions of the curve is real.

It is not always clear how much of the high-LET contribution
to is an exaggeration and how much of it is real. Therefore,
the upper bound estimate for cannot be considered to be a
reliable upper bound unless the integration includes all LETs
that significantly contribute to the integral in (5). This gener-
ally means integrating to near saturation of the curve. One
way to do this is to use the exponential fit for together with
(8), which includes all contributions from the complete curve.
Another way is to use a Weibull fit for together with the
rate calculation method. A good computer code that calculates
heavy-ion rates from Weibull parameters will include all rele-
vant LETs.

A problem is most likely when no fit is used and many
points are read directly from the plot. This is tedious,
so it is tempting to exclude the higher-LET points. Devices
having threshold LETs greater than 12 MeV-cm/mg are
often assumed to be immune to protons, so it is tempting
to ignore the portion of the curve having . An
example in which this is inadequate is furnished by the AMD
K-5 microprocessor. Heavy-ion SEL data (from internal JPL
memos) are plotted in Fig. 2. The two highest points are very
crude estimates, because the SEL rate was large enough to
overwhelm the instrumentation at these points. The points were
not fit, so the curve in the figure is a hand sketch. If the portion
of the curve having is ignored, the upper bound for
calculated from (10) for MeV is only cm .
The measured value is cm , so the intended upper
bound actually underestimated the cross section. However, if
the entire plotted range of the curve is included, the calculated
upper bound becomes cm .

D. MBUs

Devices soft enough to be susceptible to protons are often
also susceptible to multiple-bit-upsets (MBUs) from heavy ions

Fig. 2. Heavy-ion SEL cross sections for the AMD K-5 microprocessor. Data
(points) are from internal memos, but the two highest points are very crude
estimates. The curve is a hand sketch.

(sometimes also protons), i.e., one particle hit upsets several bits
or cells. The first physical postulate can explain MBUs more
easily than the SV model. An attempt to explain MBU from
normal-incident heavy ions via the SV model assumes that SVs
for different cells overlap. But this implies that several cells each
collect all of the charge liberated in the overlapping region, so
this attempted explanation is unrealistic. In contrast, the first
postulate easily explains MBU in terms of charge sharing by
different cells. Each cell has its ownfunction, and these func-
tions can overlap, but with eachsmall enough so that the sum
of the s at any given location does not exceed 1. Some frac-
tion of the liberated charge is collected by one cell, and another
fraction is collected by another cell. Charge collected by a given
cell is well defined in this model for any heavy-ion hit location,
even if the ion hits another cell. This makes an individual cell
cross section for a given heavy ion well defined, in terms of the
hit locations that will upset that cell. Individual cell cross sec-
tions increase with increasing ion LET, and can sometimes be-
come large enough to overlap. Hits to overlap regions produce
MBUs.

Several types of device cross sections can be defined. One
type, called the U-type here (U for upset), is calculated from
the total number of upsets observed during an SEU test, while
another type, called the G-type here (G for group), counts the
number of occurrences of upset groups. An upset group is de-
fined here to be the set of upsets (one or more) produced by the
same particle hit. For example, if one particle hit upsets four
cells, the U-type cross section counts this as four upsets, while
the G-type counts this as one group. The G-type is useful when
one upset group is regarded as one device failure, regardless of
whether the group contains one or many cell upsets. There are
also variations of the G-type, e.g., the G3-type, which counts
the number of occurrences of groups containing three upsets.
The G-type device cross section is the sum inof the G -type
cross sections, while the U-type is the sum inof times the
G -type.

Only the U-type device cross section has the property of being
the sum of the bit or cell cross sections. The U-type device cross
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section can be larger than the area of the entire device, because
cell cross sections can overlap to the extent that the sum of these
cross sections is larger than the device area. If all cells in the de-
vice are identical, the cell (or bit) cross section is the U-type de-
vice cross section divided by the number of cells in the device.
In contrast, while a G-type device cross section can be numer-
ically divided by the number of bits and reported as a per-bit
cross section, it is physically meaningless to associate this with
an individual cell.

The upper bound given by (5) was actually derived for an
individual cell rather than an entire device. The bound can be
applied to devices by summing over cells. If we apply (5) to each
cell and sum over cells, we obtain the same result (5), except that
the cross sections are now sums of cell cross sections. These
sums are U-type device cross sections. Therefore, the U-type

can be used in (5) to obtain an upper bound estimate for
the U-type . It is plausible that the G-type can be used
for the G-type . The arguments used here neither support
nor contradict this assertion. Investigating the validity of this
assertion might be a subject for future work. The conclusion that
is supported here is that U-types are used to estimate U-types.

DRAMs are especially prone to MBU, and they are also espe-
cially prone to cosine-law errors. The U-type device heavy-ion
cross sections (and therefore the cell cross sections) for DRAMs
are sometimes better described as isotropic than by the cosine
law (the G-type may have some other angular dependence, but
this is not related in a simple way to the cell cross section).
Therefore, data intended to represent the heavy-ion suscepti-
bility of a DRAM at normal incidence should be measured at
normal incidence, as opposed to using an assumed cosine-law
conversion with data measured at angles.

VI. COMPARISONS WITHMEASUREDDATA

Calvelet al.[17] and Petersen [18] each compiled a list of de-
vices tested for SEU using both heavy-ions and protons. Weibull
parameters for the heavy-ion cross sections were provided for
each device, so an upper bound estimate foris easily calcu-
lated from (10), using a computer code that calculates heavy-ion
SEU rates and that accepts Weibull parameters as input. The cal-
culated and measured saturation proton cross sections are com-
pared in Table II (no distinction is made here between the sat-
uration cross section and the cross section at MeV).
SEU data in the upper block in the table are from Calvelet al.
[17]. Data from Petersen [18] that are not already in the upper
block are in the second block (excluding two devices as dis-
cussed at the end of this section). The Weibull parameters are
included in the table so that readers possessing a computer code
as discussed above can easily reproduce the estimates for.
SEL data for the last two devices (lower block) in the table were
discussed in previous sections. The last column is the calculated

divided by the measured .
Note that the upper bound is within a factor of three of the

measured cross section for most of the SEU cases listed. The
SEL entries are consistent with a known trend. Given two de-
vices having the same curve, but one refers to SEU and the
other refers to SEL, the proton cross section is usually (perhaps

not always) smaller for the SEL case. Therefore the upper bound
estimate will often be excessively conservative for SEL (e.g., the
HM65162). However, the K-5 shows that there are also cases in
which the upper bound is only moderately conservative.

Two devices were omitted from the second block in Table II.
One is the AMD version of the 93L422. The upper bound esti-
mate for this device under-estimated the reported proton cross
section by a factor of six, and this motivated a search for the orig-
inal data. This search revealed that the Weibull fit in [18] under-
estimates the heavy-ion cross section data [19] by a consistent
(various LET) factor of either about two or three, depending on
which of the two tested devices is selected for comparison. It
was also found that scatter in the proton data [20] spans a factor
of five, with the most pessimistic data point appearing in the
subsequent literature (internal JPL memos commented on large
part-to-part variations, and problems with proton-beam control
and dosimetry). While these data are adequate for SEU rate esti-
mates, the precision is inadequate for testing or refining theoret-
ical models. Incidentally, this search also revealed considerable
part-to-part variations in the Fairchild version of the 93L422 (in-
ternal JPL memos), so the slight under-estimation in Table II for
this device is not too alarming. The other omitted device is the
2164. The upper bound estimate for this device under-estimated
the reported proton cross section by a factor of almost two, and
this motivated another search for the original data. It was found
that several types of heavy-ion cross sections were measured
[2], but the type appearing in the subsequent literature is the
G-type discussed in Section V-D. The U-type is about twice the
G-type. Use of the G-type may or may not be valid, but it was
also found that the proton cross section reported in [18] was
more than twice the value reported in [2].

VII. EQUALITIES FOR SEVERAL SPECIAL CASES

This section derives equalities (instead of inequalities or
bounds) for several special cases. The results have limited
practical applications because they are only useful for SEU
or SEL rate calculations if we have information that is rarely
available. Future work may find ways to obtain the required
information, but another motivation for this section is academic
curiosity. It is interesting to see the similarities and differences
between various cases. Furthermore, the results derived in this
section can be compared to results previously derived by other
investigators. This comparison is made in the next section.

A. Case 1: A Single but Arbitrary SV

The first special case is a single SV having an arbitrary shape.
The thickness measured in the vertical direction can vary with
the lateral coordinates. This variable thickness accounts for the
gradual increase in the normal-incident versus curve,
as previously pointed out by Langworthy [21]. Using
inside the SV and outside, (2) and (3) reduce to
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TABLE II
COMPARISONBETWEENPREDICTED AND MEASURESPROTONSATURATION CROSSSECTIONS. DATA IN THE FIRST BLOCK ARE FROMCALVEL et al. [17], AND DATA

IN THE SECOND BLOCK ARE FROM PETERSON[18]. DEVICES IN THE THIRD BLOCK WEREDISCUSSED INEARLIER SECTIONS

which gives

(12)

Note that if it is somehow known that the single SV model
does apply to a device, but is unknown, then the supplemen-
tary information (that the single SV model applies) cannot be
used to reduce the bound given by (5). Without knowing, the
best bound obtainable for (12) is still given by (5). In fact, we
see from (12) that the upper bound given by (5) is not overkill,
because this limit can be reached by any device adequately de-
scribed by the single SV model and having a special value for
the critical charge. This special value is the maximizingin
(4). Using the data in Table I, we calculate this maximizing
(which is ) to be about 0.1 pC when MeV.

The derivation of (12) assumed a single SV, but summing
cross sections produces the same result for any collection of SVs
having identical values for .

The assumption that inside the SV is appropriate when
is the critical value of the charge liberated within the SV.

If the SV is subject to some kind of transistor gain amplifica-
tion, the charge collected at a device contact could differ from
the liberated charge. For example, if an amplification results in

the collected charge being twice the liberated charge, and if
refers to the critical value of the collected (or amplified) charge
instead of the critical value of the liberated charge, then
inside the SV. A generalization of (12), which allowsto be
any positive constant (denoted ) in the SV is

B. Case 2: A Collection of RPPs Having a Distribution of
Critical Charges

Previous results apply to a device having a single value of
. A device containing several components, having different

values of , can be treated by simply adding the cross sections
for each component. The original postulate behind the IRPP
method for calculating heavy-ion rates [15] is that there is a col-
lection of RPP shaped SVs producing a distribution of values
of . The gradual increase in the heavy-ion cross section with
increasing ion LET is attributed to an increasing number of con-
tributing RPPs with increasing LET. To describe this case, we
can use (12) for each RPP [the heavy-ion cross section in (12)
becomes a step function when applied to an RPP, allowing the
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right side to be expressed without an integral], and sum (or in-
tegrate) the individual RPP cross sections to obtain the device
cross section. The result need not be listed here because it is
identical to the result derived in Case 4 discussed later. The two
cases produce the same result because of a mathematical equiv-
alence pointed out in the discussion of Case 4.

C. Case 3: A Partially Separable

This case applies when can be adequately approximated
by a partially separable function; a function ofalone times a
function of and alone ( measures depth, andand are
two lateral coordinates). We write as

(13)

for some functions and . This equation can be written as

(14)

where the charge-collection depthand the integral are de-
fined by

Substituting (14) into (2) gives

where is defined by

(15)

It is shown in the Appendix that the above equation for can
be written as

(16)

D. Case 4: Lateral Variation within a Uniform Contributing
Depth

This case, which is a further specialization of the previous
case, assumes that charge collection is confined to a horizontal
layer having a uniform thickness. is independent of (but
it may still depend on the lateral coordinates) within this layer,
and above or below this layer. This case is obtained from
Case 3 by letting in (13) satisfy when is inside
the horizontal layer, and when is outside. For this
case, (15) reduces to

and (16) becomes

(17)

This result also applies to the collection of RPPs (Case 2) with
the RPP thickness, because there is a mathematical equiva-

lence between that case and the present case. The equivalence
applies to normal-incident heavy ions [note that unlike the in-
tegral in (5) and (12), the integral in (17) is not rotationally in-
variant, so the heavy-ion data must refer to normal incidence].
The equivalence is due to the fact that (for normal-incident hits)
an that varies with the lateral coordinates combined with a
constant (this case) is equivalent to a that varies with the
lateral coordinates (from one RPP to the next) combined with a
constant (Case 2).

It is interesting that (17) is not equivalent to the result (12)
for a single but general SV (Case 1). A comparison between the
two equations shows a fundamental difference between a col-
lection of RPPs and a single but general SV (having a variable
thickness), even though both cases can produce the same
curve. The same curve can lead to different estimates for

, depending on which model is assumed to apply. A device
described by both Case 1 and Case 4 (or Case 2) is character-
ized by an SV with uniform depth, so the heavy-ion cross sec-
tion curve is a step function and the two equations, (12) and (17),
give the same result. Otherwise, the two equations give different
results.

If it is somehow known that Case 2 applies, an estimate for
might be obtained from a method discussed by Petersen

[22]. Note however, that while Cases 2 and 4 are indistinguish-
able in terms of heavy-ion hits at normal incidence, they are
distinguishable in terms of the directional dependence of the
heavy-ion cross section for hits at angles. Case 2 is equivalent
to a modified Case 2 in which the same is assigned to all
RPPs and is uniform within each RPP, but is different
for different RPPs. However, the original and modified Case
2 regard all RPPs as spatially isolated. To obtain Case 4, we
must move the RPPs in the modified Case 2 next to each other
and add collected charges from all, so that a hit at an angle can
simultaneously intersect several RPPs, with each adding a con-
tribution to the collected charge. The heavy-ion cross section
will have a different directional dependence for isolated RPPs
(Case 2) than for adjacent RPPs (Case 4) that can each contain a
section from the same track and contribute to collected charge.
Therefore, while Petersen’s method applies to Case 2, it has
not yet been shown to be valid for Case 4 (incidentally, these
considerations suggest that Petersen may have overlooked
some complications when arguing that the traditional IRPP
heavy-ion rate calculation applies to a modified version of the
RPP model [8]).

VIII. SOME RECENT WORK

A number of results relating proton cross sections to
heavy-ion cross sections have been presented in the recent
literature. One motivation for discussing some of these results
here is to acknowledge some of the recent work previously
done by others. In particular, the result for Case 2 (Section
VII) was previously derived by Normand, as discussed below.
Another motivation for discussing these results is that it is
interesting to see the similarities and differences between
various theories. These similarities and differences become
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clear after recognizing that various results are special cases
of (and easily reproduced from) the more general theory in
the present paper. In particular, it will be seen that a result
by Normand and a result by Johnstonet al.were derived from
physically different but mathematically equivalent assumptions
(Case 2 versus Case 4 in Section VII), except that Johnston
used an approximation for .

A. Normand’s Result

An equation resembling (17) was previously derived by Nor-
mand equation [(6) in [10]) from the physical assumptions under
Case 2 in Section VII [23]. Apart from notation, the equations
differ in that Normand’s equation contains an additional param-
eter , which was first introduced in an earlier paper [24]. Com-
parisons between model predictions and measured proton cross
sections indicated that is appropriate for some cases,
while is appropriate for some other cases [10]. This pa-
rameter is supported by physical arguments, and these argu-
ments can be used to modify (17) as shown below.

The derivation of (17) started with onefunction applicable
to all ionization sources, but a differentfor different sources
may actually be appropriate, depending on whether the ioniza-
tion produces high-density conditions (the carrier density lib-
erated by the ionization greatly exceeds the doping density) or
low-density conditions. For the high-density case, a low-order
approximation for collected current at a reversed-biased deple-
tion region boundary (DRB) is twice the minority carrier diffu-
sion current, with the carrier-density gradient (used to calculate
the diffusion current) calculated from the ambipolar diffusion
equation [4], [5]. However, for low-density conditions at the
DRB, the current is the minority carrier diffusion current instead
of twice this current. Assuming that the high-density case ap-
plies to heavy ions, while proton reaction products create condi-
tions ranging anywhere between low-density and high-density,
the appropriate for proton reactions is somewhere between
0.5 and 1 times the appropriate for heavy ions. If refers
to heavy ions, then (2) should be modified by replacingwith

, where is some number between 0.5 and 1. Repeating the
derivation of (17) while using the modified form of (2) gives

As long as is regarded as a fitting parameter, and not given
a literal interpretation, the equation is just as convenient when
expressed in terms of another fitting parameter . In
terms of , the equation becomes

which conforms to Normand’s result.

B. Barak’s Result

A result presented by Baraket al. ([25, eq. (6)], also in [26])
has the same form as (17). The two equations can be given a
more similar appearance by changing variables fromto in
(17), using , and then integrating (17) by parts. How-
ever, a distinguishing characteristic of their work is that in

(17) is replaced by an experimentally measured function (de-
scribing the spectra of charge liberated in surface barrier detec-
tors via proton reactions) which is not subject to errors associ-
ated with the second physical postulate in Section II. Their
is refined by including an implicit dependence on. Unfortu-
nately, this replacement for appears to be justified only for
the conditions assumed under Case 2. Perhaps their work will
inspire future work that will improve upon the second physical
postulate while still retaining most of the generality allowed by
the first physical postulate.

C. Johnston’s Result

An analysis by Johnstonet al. [27] recognized that the col-
lected charge relevant to heavy-ion induced SEL is a function of
the lateral coordinates of the ion-hit location. This is consistent
with Case 4, and an equation used by Johnston for calculating
proton SEL cross sections can be reproduced by applying an
approximation to (17). This approximation, which was used by
Johnston, replaces a distributed spectrum of proton-induced re-
action products with one predominant or representative type of
reaction, in which the deposited energy is about 10 MeV (the
liberated charge is about 0.46 pC, which is the number used by
Johnston). The entire (i.e., includes all high-energy interactions)
proton cross section is associated with this reaction, sois ap-
proximated by a step function given by

m if pC

if pC

Substituting this step function for into (17) gives

m
m MeV cm

mg
(18)

When is a distributed spectrum, the heavy-ion cross section
over a range of LET values contributes to . The fact that
is evaluated at only a single point in (18) is an artifact of the
step-function fit used for . The selected step function might
be the best of the step-function fits for the intended application,
because Johnstonet al. [27] found good agreement between the
measured and predicted for a number of cases representing a
wide range of technologies. However, it is not yet clear whether
this approach has limitations.

A distinguishing characteristic of their work is in the selection
of a value for . was taken to be the epi-layer thickness for
the epitaxial devices, but the bulk devices require more thought.
Computer simulations have shown that Case 4 does not apply to
the bulk devices (of the cases considered in Section VII, Case 3
is the only possible candidate). Therefore,does not have a
literal interpretation as assumed in Case 4, and some effective
value is needed. From the point of view of Case 4,is a constant
and is not necessarily the same as the charge-collection depth
(which is a function of the lateral coordinates). The value that
Johnston assigned to was the charge-collection depth calcu-
lated by computer simulations at the lateral center of a cylindri-
cally symmetric device (the charge-collection depth is expected
to be maximum at the lateral center). Johnstonet al.provided a
recipe instead of an equation, but the numerical entries in [27,
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Table II]) can be reproduced by using (18) withobtained from
[27, Fig. 5]).

D. O’Neill’s Results

O’Neill et al.provided two approaches for relating proton to
heavy-ion cross sections. The first starts with a sophisticated
technique [28] which calculates a spectrum of proton-induced
liberated charge, which is a replacement for in (17) that
is not subject to errors associated with the second physical pos-
tulate in Section II. Charge collection is assumed to be as de-
scribed by the SV model, where the SV is an RPP. An effective
LET associated with a proton reaction is calculated by dividing
the liberated charge by the RPP thickness. Effective LET and
liberated charge are equivalent descriptions, because one is pro-
portional to the other. The proton-induced spectrum, plotted as
a function of effective LET, is compared to a heavy-ion spec-
trum representing a space environment and plotted as a func-
tion of ion LET. The end result of this work is an upper bound
for heavy-ion induced SEU rates derived from measured proton
cross sections.

The applicability of this analysis may have some limitations
(for reasons given below), but it might be possible to broaden the
applicability by modifying the arguments. The proton-induced
spectrum is plotted against effective LET while the heavy-ion
spectrum is plotted against ion LET instead of effective LET.
However, for hits at angles, there is also an effective LET for
heavy-ions (also defined in terms of liberated charge divided
by RPP thickness). A suggested modification to the authors’
arguments includes the effects of angles as discussed below.

The basic idea is to compare the proton-induced spectrum
to aneffective fluxdescribing heavy ions. An effective flux is
a characteristic of both the environment and an assumed di-
rectional dependence describing device susceptibility to heavy
ions. An effective flux for a given heavy-ion environment is
different for devices having a nearly isotropic heavy-ion cross
section (the RPPs are cubes) than for devices described by the
cosine law (the RPP thickness is much smaller than the lateral
dimensions). Effective flux can be rigorously defined for any
model (RPP or other) in which there is a functionsatisfying

(19)

where is the directional heavy-ion cross section eval-
uated at ion LET and in the direction described by the spher-
ical-coordinate angles(measured from the device normal) and

, and is the normal-incident heavy-ion cross section. The
here is the same as in (17), but the symbolism was

changed to distinguish normal incidence from other directions.
The function has a simple interpretation for devices described
by Case 2 and with geometrically similar RPPs (i.e., each ratio
of dimensions for one RPP equals the corresponding ratio for all
other RPPs). For this case, can be shown to be
the normalized (by dividing by the area of the RPP face seen at
normal incidence) directional cross section for an RPP having
normal-incident threshold LET . does not de-
pend on the size of the RPP, but it does implicitly depend on the
RPP dimension ratios, and explicitly depends on the threshold

LET of the RPP. The heavy-ion SEU rate can be calcu-
lated from

where is the differential (in LET) directional flux. Substituting
(19) into the above equation gives

(20)

where is the integral effective flux defined by

(21)

From the interpretation of as a normalized directional cross
section for an RPP, it is seen from (21) that is the normal-
ized SEU rate for the RPP. This makes effective flux associ-
ated with Case 2 very easy to calculate via a standard computer
code that calculates heavy-ion SEU rates for RPPs. We calculate
the SEU rate for the RPP, divide by the area of the face seen at
normal incidence, and plot this normalized rate as a function of
the threshold LET assigned to the RPP. The calculated effective
flux will be independent of the thickness assigned to the RPP, as
long as corresponding values are assigned to the critical charge
(to be consistent with the selected threshold LET) and to the
lateral dimensions (to be consistent with the selected dimension
ratios).

Following O’Neill et al. [28], we now assume Case 2 condi-
tions with all RPPs having the same thickness. However, the

in (17) is taken to be the spectrum calculated by the au-
thors so that errors associated with the second physical postulate
are removed. We next look for a constantsatisfying

for all (22)

if it exists. If such an can be found, we can use (22) with (17)
and (20) to obtain an upper bound on the heavy-ion rate given
by

(23)

The result (23) is an extension of the authors’ earlier work
that accounts for directional effects when ansatisfying (22)
exists. If such an does not exist, we use an approach that is
analogous to an approach used by the authors. This approach
expresses the effective flux as a sum of two components con-
structed so that there is anassociated with the flux component
representing the majority of the heavy ions. A cruder but more
generally applicable (not requiring an) bound can be used for
the smaller flux component because the accuracy requirement
is more lenient for the smaller component.

One limitation still remains. This limitation is that the RPP
model is required to be an adequate approximation, and the RPP
dimensions must be known. This is because and (the
type of most suitable for this analysis) both depend on the
RPP dimensions ( is strongly dependent on the dimension
ratios, even if is not). This makes the values allowed for
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dependent on RPP dimensions. A second approach by the same
authors [29] does not have this limitation.

The second approach also compares a proton-induced spec-
trum to a heavy-ion spectrum, but all spectra now refer to par-
ticle LET instead of effective LET, so comparisons are between
the same types of spectra. If the two spectra are found to be pro-
portional (for example), they should produce single event rates
that are in the same proportion regardless of what model (RPP
or other) applies; except for range effects. Ion range is impor-
tant because charge collection depths can be quite large (some-
times 20 m for SEL [27]), and the contributing depth is larger
than the charge-collection depth, so ion range must sometimes
be very large in order for initial LET to be an adequate charac-
terization. The authors take range effects into consideration by
distinguishing between different reaction products on the basis
of range. One paper [29] distinguished reaction products having
ranges less than 5m from the others. This is inadequate for the
larger contributing depths, but more recent work extends the ap-
plicability to larger depths [30]. The theory in the present paper,
which is most suitable for upper bound estimates of the proton
cross section due to a conservative property of the second phys-
ical postulate, does not apply to this more recent work, so this
work is not discussed further here.

E. The Petersen–Barak Equation

Baraket al. [11] pointed out that empirical fits provided by
Petersen [18] can be combined to give

(24)

where
heavy-ion saturation cross section;
(throughout this section) is the saturation cross sec-
tion for protons;
numerical part (when the units are MeV-cm/mg)
of defined by .

When Weibull parameters are given, can be calculated
from

This paper calls (24) the Petersen–Barak equation. This equa-
tion can be reproduced (approximately) by assuming that Case
1 applies and using (6) to write (12) as

(25)

where the dependence was omitted from the notation because
200 MeV is assumed. Let be the charge-collection depth
at the perimeter of the region represented by the cross section

. The critical LET for ion hits at this perimeter is
, so

and (25) becomes

(26)

To obtain the desired result, we use thead hocassumption

m (27)

Using (27) and Table I with (26) gives

(28)
When the curve is defined by a Weibull fit [as opposed to
alternatives such as (7)], a fairly good approximation is

(29)

Another approximation is

within a factor of when
(30)

The relevant values of in (30) depend on . For many
(not all) devices in Table II, the relevant results in (30) being
accurate to within a factor of 1.4 (either too small or too large).
Applying the approximations (29) and (30) to (28) produces the
Petersen–Barak equation (24).

Because approximations were used to derive (24) from (28),
we might expect (24) to be less accurate than (28). It turns out
that (24) has a better track record than (28). The device data
in Table II (excluding the SEL cases) were used to construct
Table III. The ratio columns give calculated from the indi-
cated equation divided by the measured. Note that the ratio
from (24) is usually closer to 1 than the ratio from (28). Other
values for were tried with (28), but did not improve the
track record for (28) when a common value for is assigned
to all devices.

A suggested explanation as to why (24) fits the data better
than (28) is that (28) assigns the same to all devices. Per-
haps some other parameter is better than in the sense of
being approximately the same for many devices. We could con-
sider a common value for , instead of , for all devices. A
common produces estimates that are a common multiple of
the upper bounds in Table II. Selecting to make the estimates
equal to one-half the upper bounds will produce a moderately
good track record, but still not as good as (24).

Assigning a common to all devices does not (at least
not when Case 1 is assumed) fit the statistical trend as well as
(24), and assigning a common to all devices does not fit the
statistical trend as well as (24). That (24) performs better than
the above alternatives is not an accident, because (24) originated
from empirical fits to extensive data sets. The property of being
an empirical fit gives (24) an advantage and a disadvantage com-
pared to a physics-based model. The disadvantage is that infor-
mation sufficient to completely determine cannot be utilized
by (24), even if such information were available. The advantage
is that, when such information is not available (usually the case
in practice), (24) has a high probability of producing an estimate
that is nearly as good or better than a physics-based model con-
tainingad hocvalues for the unknown parameters.
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TABLE III
THE RATIO COLUMNS GIVE � CALCULATED FROM THE INDICATED

EQUATION (USING DATA IN Table II) DIVIDED BY THE MEASURED� . NOTE

THAT THE PETERSEN–BARAK EQUATION (24) PERFORMSBETTER (THE RATIO

IS CLOSER TO1) THAN (28) FOR THEMOST OF THECASESLISTED

IX. CONCLUSIONS

A common situation is that in which a device has been tested
with heavy ions for SEU and/or SEL, but not yet tested with
protons. A proton test is an additional expense, so there is a
motivation to use heavy-ion data to predict proton cross sec-
tions. Of the results derived here, the upper bound estimate is
the most useful in terms of practical applications, because it is
derived from the most generic assumptions and does not require
information that is not available. A disadvantage is that this es-
timate is sometimes excessively conservative (pessimistic). The
method was used to estimate SEU rates in a proton environ-
ment for numerous devices of interest to a JPL flight project.
An additional (but not excessive) conservatism was included by
assigning the 200 MeV cross section to all protons having ener-
gies greater than 7 MeV. The observation from this application
is that the rate estimates are often acceptable to a flight project,
even though the estimates might be excessively conservative, in
which case a proton test is not needed. If the estimate predicts
problems for a flight project, a proton test is needed to obtain
a smaller estimate, but the upper bound does at least reduce the
number of tests that are required.

Practical applications of the results intended to accurately es-
timate the proton cross section (instead of a bound for it) are
more limited, because additional information is required. It must
first be known which model (e.g., one of the cases in Section
VII) is the best choice, and then model parameters must be es-
timated. If it is (somehow) known that Case 1 is an adequate
approximation, an estimate is needed for the critical charge. If
it is (somehow) known that either Case 2 or Case 4 is an ade-
quate approximation, an estimate is needed for the RPP thick-
ness or the contributing depth. If it is (somehow) known that the

latter cases are inappropriate, but the more versatile Case 3 is an
adequate approximation, an estimate is needed for the function

. Future work might find inexpensive methods for obtaining
the required information, but another reason for presenting these
results is academic curiosity. It is interesting to see the similari-
ties and differences between various models, including models
previously presented by others.

An empirical fit applicable to SEU (not SEL), which this
paper calls the Petersen–Barak equation, was also discussed.
This is not only one of the simplest results, but also has a high
probability of producing an estimate for the saturation proton
cross section that is nearly as good or better than a physics-based
model containing ad hoc values for unknown parameters. If the
information that is needed to take full advantage of a physics-
based model is not available (usually the case), and if the objec-
tive is to obtain a “most probable estimate,” as opposed to an
upper bound, this equation should be considered.

APPENDIX

DERIVATION OF EQUATIONS (3) AND (16)

Let the coordinate system be oriented so that theaxis is
parallel to the heavy-ion trajectory. The device orientation rela-
tive to this coordinate system is arbitrary. For a normal-incident
orientation, is the normal-incident heavy-ion cross section.
Otherwise, is a directional cross section. The location of an
ion trajectory is given by two coordinatesand . Let
be the collected charge produced by an ion with LETand
having a trajectory at . Using the selected device orientation
to define the charge-collection efficiency function ,
we have

(A1)

We are calling the collected charge for conceptual clarity,
although it could be some other quantity. If so, then (A1) is taken
to be the definition of , with defined in the first physical
postulate. The first physical postulate implies that is the
area of the set of points ( ) in the plane satisfying

This set of points is the same as the set satisfying

where is the normalized collected charge (also called the
charge-collection depth) defined by

(A2)

Therefore

(A3)

where is defined by

area of the set of points

satisfying
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i.e., is the cross section for the normalized charge to ex-
ceed .

A mathematical theorem can be derived after defining some
additional symbolism. Letbe any set of points in the plane
having a defined area. The area ofis denoted , and the
compliment of (all points in the plane not in) is denoted .
For any , define

the set of points satisfying

Now select a positive number and let
. Define each of the sets , by

the set of points satisfying

Some of the above sets may be empty but this does not invalidate
the theory. The plane is the union of with , while

is the union of the sets . Therefore an arbitrary
set can be expressed as

The right side is a union of nonintersecting sets, so

for any function such that the integral on the left side exists.
Using the definition of and the fact that on
gives

(A4)

which is valid to first order in (we will later take the limit as
). The definitions of the sets imply that

so

The right side is a union of nonintersecting sets, so

This equation allows us to write (A4) as

Taking the limit as gives

for any point set and any function such that the integrals
exist. In particular, if , we can let be the entire
plane to get

if

where the integral on the left integrates over the entire
plane, and we used . The above
equation can be expressed in terms of by using (A3) and
changing variables in the integral on the right to get

if (A5)

This equation is used to derive (16) in the main text. To derive
(3), we apply (A5) to the special case given by . The
integral on the left becomes the integral of on the
plane, which, according to (A2), is the volume integral of.
The result is

(A6)

Note that a change in the device orientation will rotate the func-
tion , but this does not change the volume integral on the left
side of (A6). This implies that the right side has the same value
whether is the normal-incident cross section or the direc-
tional cross section for some other direction.
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